SUSY Searches at ATLAS

Wolfgang Ehrenfeld (DESY)

On behalf of the ATLAS Collaboration

Fermilab, August 30th, 2011

Outline

- introduction to supersymmetry
- > ATLAS and LHC
- final states with missing E_T
 - jets with lepton veto
 - one and two leptons
 - b-jets
 - diphotons
- final states without missing E_T / R-parity violation
 - colored scalars
 - eμ resonance
 - displaced vertices
- summary and outlock

Supersymmetry (SUSY)

One of the most popular extensions of the SM

- > SUSY postulates "superpartners" to each SM particles (same quantum numbers, but spin differs by $\frac{1}{2}$) and R-parity $R = (-1)^{3(B-L)+2s}$
- > if R-parity is conserved, SUSY particles are pair produced and the lightest one (LSP) is stable
- Why is SUSY popular? It answers many open questions at once:
 - allows unification of gauge couplings
 - provides a solution to the hierarchy problem: the fermion/boson contribution to the Higgs mass exactly cancel
 - if R-parity is conserved the LSP is stable and is a dark matter candidate
- > but the MSSM has 124 free parameters ...
 - •How should we search?

Search Strategies for SUSY

- at the LHC sparticles are pair produced
 - dominantly squarks and gluinos via the strong interaction
 - they decay via cascades into the stable LSP (neutralino or gravitino), assuming R-parity conservation
- > common signature:
 - multiple, high energetic jets and transverse missing momentum
 - distinguish final states by additional particles

zero, one, two, .. leptons (e, μ), two photons, ... b-jets if 3^{rd} generation squarks are lighter than other generation squarks

- > incomplete event reconstruction due to LSP
 - no mass peak→ SUSY is in the tails of the distributions
 - SM backgrounds (top, W/Z+jets, QCD) are taken from/verified in control regions

A Word on Models

- most experimental results are interpreted in one or the other model
 - e.g. mSUGRA/CMSSM, GMSB, simplified models, ...
 - the interpretation in a model give nice, colored plots
- the main experimental result is the limit on the number of signal events in the signal region (or the limit on the effective cross section)
- interpretation is straight forward but not trivial
 - signal efficiency
 - signal uncertainties
 - statistical interpretation

- > mSUGRA/CMSSM:
 - m₀: common scalar mass
 - m_{1/2}: common gaugino mass
 - A₀: common trilinear coupling
 - tan β: ratio of Higgs vacuum expectation values
 - sign(μ): sign of SUSY Higgs potential parameter
- Section 1 in the section of the s
 - Λ: SUSY breaking scale
 - M: messenger mass scale
 - N: number of messenger fields
 - tan β: ratio of Higgs vacuum expectation values
 - sign(μ): sign of SUSY Higgs potential parameter
 - C_{grav}: ratio of the gravitino mass to its value at the breaking scale Λ
- Simplified models:
 - reduced particle spectrum: masses

The Large Hadron Collider

- > pp collisions at √s = 7 TeV (and PbPb at √s_{NN} = 2.76 TeV, not covered in this talk)
- LHC has performed extremely well this year:
 - 2.2 10³³ /cm²/s peak luminosity
 - ~ 80 pb⁻¹ per day
 - 2.5 fb⁻¹ delivered, thanks!
 - 50 ns bunch spacing
 - 8 collisions per crossing
- datasets considered by analysis
 - 2010: ~35 pb⁻¹
 - 2011: 0.87 1.34 fb⁻¹

The ATLAS Detector

~ 4π coverage in solid angle

Excellent resolution for jets, electrons, photons, muons and missing E_⊤

Excellent vertex reconstruction

Inner Detector (ID, $|\eta|$ <2.5, B=2T):

- ·Si Pixels, Si strips, TRT straws
- •Precise tracking and vertexing, e/π separation • σ /p_T ~ 3.8x10⁻⁴ p_T (GeV) ⊕ 0.015

EM calorimeter($|\eta|$ <4.9):

- •Pb-LAr Accordion
- •e/γ trigger, identification and measurement •σ/E ~ 10%/√E

HAD calorimetry ($|\eta|$ <4.9):

- •Fe/scintillator Tiles (central), σ/E ~ 50%/√E ⊕ 0.03
- •Cu/W-LAr (fwd), $\sigma/E \sim 90\%/\sqrt{E} \oplus 0.07$
- Trigger and measurement of jets and missing E_T

Muon Spectrometer (MS, $|\eta|$ <2.7) :

- •air-core toroids with gas-based muon chambers
- •Muon trigger and measurement with p_T resolution < 10% up ~ 1 TeV

Acknowledgements

Courtesy of Henri Bachacou

ATLAS SUSY Searches

ATLAS SUSY analyses	Publications
E _T ^{miss} + jets + 0 lepton	<u>arXiv:1102:5290</u> (35 pb ⁻¹) [published in PLB]; <u>ATL-CONF-2011-086</u> (163 pb ⁻¹); <u>preliminary</u> (1.04 fb ⁻¹)
E _T ^{miss} + multiple jets + 0 lepton	preliminary (1.34 fb ⁻¹)
E _T ^{miss} + jets + 1 lepton	<u>arXiv:1102:2357</u> (35pb ⁻¹) [PRL]; <u>ATL-CONF-2011-090</u> (163 pb ⁻¹); preliminary (1.04 fb ⁻¹)
E _T ^{miss} + b jets + 0/1 lepton	<u>arXiv:1103:4344</u> (35 pb ⁻¹) [PLB]; ATL-CONF-2011-098 (833 pb ⁻¹); ATL-CONF-2011-130 (1.03 fb ⁻¹)
E _T ^{miss} + jets + 2 leptons (OS, SS, SF subtraction)	arXiv:1103:6214 (35 pb ⁻¹) [EPJC]; arXiv:1103:6208 (35 pb ⁻¹) [EPJC]; ATL-CONF-2011-091 (simplified model interpretation to SS); preliminary (1.04 fb ⁻¹)
E _T ^{miss} + jets + >= 3 leptons	ATL-CONF-2011-039 (34 pb ⁻¹)
E _T ^{miss} +γγ	<u>arXiv:1107:0561</u> (36 pb ⁻¹); preliminary (1.04 fb ⁻¹)
colored scalars	preliminary (34 pb ⁻¹)
eμ resonance (RPV)	<u>arXiv:1103:5559</u> (35 pb ⁻¹) [PRL]; ATL-CONF-2011-109 (870 pb ⁻¹)
Stable hadronising squarks & gluinos	arXiv:1103:1984 (34 pb-1) [published in PLB];
Heavy long-lived charged particles	arXiv:1106:4495 (37 pb ⁻¹) [submitted to PLB];
Heavy medium-lived particles	preliminary (33 pb ⁻¹)

Final States with Missing E_T

Jets + Missing E_T

> ATLAS:

- Select events with jets and missing $E_T \rightarrow$ veto events with p_T of $e(\mu) > 20(10)$ GeV
- Define signal region based on effective mass: m_{eff} = H_T + missing E_T
- optimize cut on m_{eff} and missing E_T for each jet multiplicity
- combine 5 channels to optimize search for different topologies

$H_T =$	sc	alar	
sum	of	all je	$t E_{ au}$

Signal Region	≥ 2 jets	≥ 3 jets	≥ 4 jets	High mass
$E_{ m T}^{ m miss}$	> 130	> 130	> 130	> 130
Leading jet $p_{\rm T}$	> 130	> 130	> 130	> 130
Second jet $p_{\rm T}$	> 40	> 40	> 40	> 80
Third jet $p_{\rm T}$	_	> 40	> 40	> 80
Fourth jet $p_{\rm T}$	_	_	> 40	> 80
$\Delta \phi$ (jet, $E_{\rm T}^{\rm miss}$) _{min}	> 0.4	> 0.4	> 0.4	> 0.4
$E_{ m T}^{ m miss}/m_{ m eff}$	> 0.3	> 0.25	> 0.25	> 0.2
$m_{\rm eff}$ [GeV]	> 1000	> 1000	> 500/1000	> 1100

Jets + Missing E_T

> Exclude up to ~ 1 TeV for m(squark) = m(gluino)

Enormous gain since last spring:
 0.035 fb⁻¹ → 1 fb⁻¹

Large Jet Multiplicity + Missing E_T

- use jets + missing E_T analysis and increase number of jets: 6, 7 or 8
- ➤ QCD control region defined by lower number of jets, e.g. 7 → 6 jets
 - essential to estimate QCD background from data as MC predictions are unreliable
 - other background estimated from MC and validated in different data control regions
- signal region defined by number of jets and MET/sqrt(H_T)

Large Jet Multiplicity + Missing E_T

- use jets + missing E_T analysis and increase number of jets: 6, 7 or 8
- > QCD control region defined by lower number of jets, e.g. 7 → 6 jets
 - essential to estimate QCD background from data as MC predictions are unreliable
 - other background estimated from MC and validated in different data control regions
- signal region defined by number of jets and MET/sqrt(H_T)

b-jets + Missing E_T

- 3rd generation is special: has to be light to stabilize the Higgs
- > selection similar to jets + missing E_T plus 1 or 2 b-tags
- define 4 signal regions / two control regions and combine them for the exclusion limit

Phenomenological MSSM: $BR(g \rightarrow b_1 b \rightarrow bb\chi^0_1) = 100\%$

- cascades including charginos or neutralinos can lead to final states with one, two, three or more isolated leptons
- advantage: suppress QCD background, help in trigger
- analysis requires exactly 1 lepton (e: p_T > 25 GeV or μ: p_T > 20 GeV)
 and ≥ 3/4 jets → four signal regions

Background

- fake leptons from QCD background
- fully data driven estimate with "loose-tight matrix method"
- non QCD background dominated by top pairs and W+jets
- > semi-data driven estimate
 - normalize MC to data in background specific CR
 - extrapolate to the signal region relying on MC shapes
 - final background estimate done performing a simultaneous likelihood fit of the different CR

- observed number of events in data consistent with SM
- uncertainties dominated by jet energy scale and resolution, theory and MC modeling and statistics
- interpretation in:
 - mSUGRA/CMSSM (m₀,m_{1/2})-plane
 - simplified model gluino → chargino → neutralino squark → chargino → neutralino
 - bilinear R-parity violation model

For bilinear RPV see talk by Emma Pastor [9B Thu]

Simplified model: gluino → chargino → neutralino

Simplified model: squark → chargino → neutralino

$$x = (m_{\tilde{\chi^{\pm}}} - m_{\tilde{\chi^{0}}}) / (m_{\tilde{q}/\tilde{g}} - m_{\tilde{\chi^{0}}})$$

Simplified model: gluino → chargino → neutralino

Simplified model: squark → chargino → neutralino

$$x = (m_{\tilde{\chi^{\pm}}} - m_{\tilde{\chi^{0}}}) / (m_{\tilde{q}/\tilde{g}} - m_{\tilde{\chi^{0}}})$$

Simplified model: gluino → chargino → neutralino

Simplified model: squark → chargino → neutralino

$$x = (m_{\tilde{\chi^{\pm}}} - m_{\tilde{\chi^{0}}}) / (m_{\tilde{q}/\tilde{g}} - m_{\tilde{\chi^{0}}})$$

- > 3rd generation is special: has to be light to stabilize the Higgs
- selection similar to one lepton + 4 jets + missing E_T plus 1 b-tags
- signal region defined by missing E_T > 80 GeV, m_T > 100 GeV and m_{eff} > 600 GeV

Phenomenological MSSM: BR($q \rightarrow t_1 t \rightarrow tb \gamma^{\pm_1}$) = 100%

- 2 leptons from chargino/neutralino decays
- 3 analyses, searching for dilepton events:
 - opposite sign (OS) \rightarrow a),b),c),d)
 - same sign (SS) \rightarrow a),b)
 - with flavour subtraction (FS) \rightarrow c),d)
- selection: exactly 2 isolated leptons with

a)
$$\tilde{\chi}_i^0 \to l^{\pm} \nu \tilde{\chi}_i^{\mp}$$

b)
$$\tilde{\chi}_i^{\pm} \to l^{\pm} \nu \tilde{\chi}_i^0$$

c)
$$\tilde{\chi}_i^0 \to l^{\pm} l^{\mp} \tilde{\chi}_i^0$$

d)
$$\tilde{\chi}_i^{\pm} \to l^{\pm} l^{\mp} \tilde{\chi}_j^{\pm}$$

ee: $p_{T} > 25/20 \text{ GeV}$

 e_{μ} : p_{T} > 25/10 GeV and M_{II} > 12 GeV $_{\mu}e$: p_{T} > 20/20 GeV

 $μμ: p_T > 20/10 \text{ GeV}$

Opposite sign:

- three signal region → E_T^{miss} / jets
- main background → top pairs, Z+jets

Same sign:

- two signal region → E_T^{miss} / jets
- main background → fake leptons from jets, opposite sign leptons with charge mismeasurement

No excess above the SM predictions seen in different signal regions

m_{1/2} [uev]

> 95% C.L. upper limits on cross section of non-SM processes × acceptance × efficiency:

	Background	Obs.	95% C.L.
OS-SR1	$15.5 \pm 1.2 \pm 4.4$	13	9.5 fb
OS-SR2	$13.0 \pm 1.8 \pm 4.1$	17	15.2 fb
OS-SR3	$5.7 \pm 1.1 \pm 3.5$	2	5.0 fb
SS-SR1	$32.6 \pm 4.4 \pm 4.4$	25	10.2 fb
SS-SR2	$24.9 \pm 4.1 \pm 6.6$	28	20.3 fb

> 2010 result:

OS cross section limit (MET > 150GeV)
 ee: 90 fb, eμ: 220 fb, μμ: 210 fb

SS cross section limit (MET > 100 GeV)
 70 fb

For flavour subtraction see talk by Sky French [9B Thu]

Diphoton + Missing E_T

- Gauge Mediated SUSY Breaking (GMSB)
 - the very light gravitino is the LSP
 - event topology defined by next to lightest sparticle (NLSP)
 - large parameter space has neutralino NLSP: neutralino decays to photon and gravitino
- final state: diphoton (+ jets) + MET
 - 2 photons (E_T > 25 GeV)
 - missing E_T > 125 GeV
 - QCD and EW background estimated from control regions, irreducible background from MC
- > result:
 - observed events: 5
 - expected events: 4.1 0.6 1.6

Diphoton + Missing E_T: Interpretation

- General Gauge Mediation (GGM)
 - simplified model with three sparticles:

Gluino for production Bino-like neutralino as NLSP

m(gluino) < 776 GeV for m(neutralino) = 50 GeV

- minimal GMSB / SPS8 slope
 - full mass spectrum
 - first time considered at the LHC
 - Λ < 145 TeV excluded</p>

Diphoton + Missing E_T: Interpretation

- General Gauge Mediation (GGM)
 - simplified model with three sparticles:

Gluino for production Bino-like neutralino as NLSP

 m(gluino) < 776 GeV for m(neutralino) = 50 GeV

- Universal Extra Dimension (UED)
 - mass spectrum similar to SUSY
 - 1/R < 1224 GeV excluded

Search generic enough for different models!

Other SUSY searches

Massive Colored Scalars in Four Jets

- pair production of scalar gluons (sgluon) which decay into two jets each (extended SUSY) or hypercolor as SM extension
- > selection:
 - 4 jets (p_T > 0.55 x sgluon mass), sgluon mass > 100 GeV
 - low threshold trigger for four jets only available in 2010
 - pair jets into sgluon candidates based on $\Delta R \sim 1$, reject events with $\Delta R_{jj} > 1.6$
 - require similar masses

Resonances (and RPV search)

- search for electron and muon of opposite charge (R-parity violating decay of $v_{\tau} \rightarrow e \mu$)
 - isolated electron ($p_T > 25 \text{ GeV}$) + isolated muon ($p_T > 25 \text{ GeV}$)
 - no missing E_⊤ cut
 - background from top pairs, single top, WW, WZ, ZZ, Z→tt rely on Monte Carlo, QCD and W/Z+ jets estimated from data with "loose-tight matrix method"
 - no deviation from SM in m_{eμ} distribution

Can also interpreted as heavy boson → eµ

RP-Violation SUSY: Displaced Vertices

- look for heavy medium-lived particles in the inner tracker
- reconstruct vertices even far out of the beam-pipe, in association with a high-p_T muon (p_T > 45 GeV)

requires good understanding of tracking, detector passive material

RP-Violation SUSY: Displaced Vertices

- look for heavy medium-lived particles in the inner tracker
- reconstruct vertices even far out of the beam-pipe, in association with a high-p_T muon (p_T > 45 GeV)

requires good understanding of tracking, detector passive material

Summary of ATLAS SUSY Searches

Conclusion and Outlook

- ATLAS has produced an impressive number of papers/conference notes using the 2010 and 2011 data
- in the channels searched so far, no significant excess above the Standard Model was found
- SUSY was not "just around the corner"
- several limits have surpassed those from Tevatron/LEP
- besides MSUGRA/CMSSM also simplified models considered
- more data still to come in 2011 (already around 2.5 fb⁻¹ on tape) and then there is 2012

Related Presentations at SUSY11

- Michael Flowerdew [5C Tue]: Search for supersymmetry in final states with jets and missing transverse energy with the ATLAS detector
- Takashi Yamanaka [6D Tue]: Search for supersymmetry in final states with bjets and missing transverse energy with the ATLAS detector
- Sophio Pataraia [8D Thu]: Search for supersymmetry in final states with one lepton, jets and missing transverse energy with the ATLAS detector
- Sky French [9B Thu]: Search for supersymmetry in final states with multiple leptons and missing transverse energy with the ATLAS detector
- Jovan Mitrevski [5C Tue]: Search for supersymmetry in final states with photons and missing transverse energy with the ATLAS detector
- Emma Torro Pastor [9B Thu]: Search for R-partity violating supersymmetry with the ATLAS detector
- Josh Cogan [8D Thu]: Search for supersymmetry in final states with measurable lifetime with the ATLAS detector
- Junjie Zhu [6D Tue]: Search for supersymmetry via resonant final states with the ATLAS detector

Backup

Two Lepton + Jets + Missing ET: Flavour Subtraction

- searches for excess of same flavour-opposite sign lepton pairs over different flavour-opposite sign:
- > define the variable: $S = \frac{N(e^{\pm}e^{m})}{\beta(1-(1-\tau_{e})^{2})} \frac{N(e^{\pm}\mu^{m})}{(1-(1-\tau_{e})(1-\tau_{\mu}))} + \frac{\beta N(\mu^{\pm}\mu^{m})}{(1-(1-\tau_{\mu})^{2})}$ of e, μ efficiencies×acceptance and τ_{e} , τ_{μ} are trigger efficiencies
- > three signal region based on missing E_T, number of jets and m_∥ veto
 - SR1: SR2: SR3:
- apart from Z/γ* sources no excess is expected in SM
- SF-OF subtraction allows to cancel systematic uncertainties

	\mathcal{S}_{obs}	$ar{\mathcal{S}}_b$	RMS
FS-SR1	$131.6 \pm 0.6 (\text{sys})$	$126.5 \pm 23.5 \pm 17.2$	49.9
FS-SR2	$142.2 \pm 0.6 (\text{sys})$	$70.0\pm23.2\pm16.8$	49.1
FS-SR3	$-3.1\pm0.0(03)(sys)$	$0.4{\pm}1.2{\pm}1.2$	4.6

Search for Slow Particles

- Slow, Massive and Long Lived Particles (SMP, LLP) are predicted in several SUSY models (and in other BSM scenarios)
 - stable → ct ≥ size of detector (lifetimes ranging across many orders of magnitude!).
 - Produced with b<1 (signature is a slow object loosing energy mainly by ionization),
- In SUSY, an example are coloured sparticles hadronising into Rhadrons (bound hadronic states of a coloured sparticle, squark or gluino, and light quarks or gluons)
- > 2 analyses in ATLAS to study slow particles:
 - 1) search for R-hadrons or long-lived sleptons reaching Muon Spectrometer (MS)
 - Sleptons search uses ID+MS, R-hadrons search only MS, in both determine β_{MS} and m= p/βγ
 - Background estimate \rightarrow exploit the lack of correlations between β_{MS} and momentum

- search for charged or neutral Rhadrons, relying only on ID and Tile Calorimeter
- Search uses: long time of flight in Tile and large dE/dx in Pixel detector → in both determine β and m= p/βγ
- Background estimate → exploit the lack of correlations between dE/dx, β_{tile} and momentum

Search for Slow Particles

95% CL Exclusion from search 2):

Gluino masses <562-586 GeV (dep. on the model of hadronic scattering in matter)

Stop masses <309GeV

Sbottom masses <294 GeV (first dedicated search for sbottom R-hadrons at hadron colliders)

95% CL Exclusion from search 1):

Gluino masses <530-544 GeV, dep. on the model (with gluino as lightest LLP in Split-SUSY)

Stau masses <136 GeV (with light stau as lightest LLP in GMSB)

